

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF MECHANICAL ENGINEERING

SECOND SEMESTER EXAMINATIONS 2018/2019 ACADEMIC SESSION

COURSE:

MEE 312 – Mechanical Engineering Design I (3 Units)

CLASS:

300 Level Mechanical Engineering

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer question 1 and any other **FOUR** (4)

Date: July, 2019

HOD'S SIGNATURE

Question 1 (12 MARKS)

(a) Identify the critical location in a shaft.

- (b) An absolutely smooth and flat surface cannot be obtained for any manufactured process. True/False
- (c) What is the shaft loading factor kc for axial loading?
- (d) Define profile
- (e) Under what condition will you use the formula $(L_T) = 2 d + 12 \text{ mm}$ to calculate the length of a threading length of the screw
- (f) What is Mechanical Fastener? State the two main categories.
- (g) From the regression equation $(FL^{1/a} = constant)$ used for tests of various kinds of bearings, what is the value of 'a' for ball bearing.
- (h) List two different types of roller bearing.
- (i) Define the average life of a bearing
- (j) For lubricant between a moving and stationary object, what will be the velocity of the layer of lubricant in contact with the moving object?
- (k) What is Newton's viscous effect?
- (l) The phenomenon of bearing friction was first explained by Petroff on the assumption that the shaft is concentric. True/False

Question 2 (12 MARKS)

As shown in Figure Q2 below, two plates are clamped by steel washer-faced MJC 10 x 1.5 bolts each with a standard ½ N steel plain washer OD diameter 16 mm.

- (a) Determine the member spring rate k_m if the top plate is copper and the bottom plate is aluminum.
- (b) Using exponential curve-fit, determine the member spring rate k_m if both plates are copper. Compare the results with part (a).

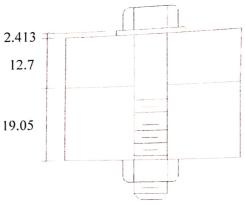


Figure Q2

Question 3 (12 MARKS)

- (a) What is 'lay' in surface finish? Explain the different types.
- (b) With the aid of a diagram explain 'fit' and the different types.

Question 4 (12 MARKS)

- (a) What type of screw thread is MJF14 x 1.5 x 80. Define each of the values indicated.
- (b) Derive the Goodman equation for shaft design.

Question 5 (12 MARKS)

- (a) What is lubrication.
- (b) List and explain four different forms of lubrication that you know.

Question 6 (12 MARKS)

At a machined shaft shoulder, the small diameter d is 28 mm, the large diameter D is 42 mm, and the fillet radius is 3 mm. The alternating bending moment is 142 GNm and the steady midrange torsional moment is 124 GNm. The heat-treated steel shaft has an ultimate strength of $S_{ut} = 0.72$ GPa and a yield strength of $S_y = 0.565$ GPa. The reliability goal is 0.99.

- (a) Determine the fatigue factor of safety (n) of the design using Goodman equation.
- (b) Determine the fatigue factor of safety (n) of the design using the equivalent approach and compare with (a) above.

Take $K_t = 1.68$, $K_{ts} = 1.42$, $K_e = 0.814$, $S_e = 0.202$ GPa Solution:

Question 7 (12 MARKS)

- (a) Derive an expression for the catalog load rating (C_{10}) of a bearing.
- (b) The design load on a ball bearing is 1840 N and an application factor of 1.2 is appropriate. The speed of the shaft is to be 300 rev/min, the life to be 30 kh with a reliability of 0.99. What is the C10 catalog entry to be sought (or exceeded) when searching for a deep-groove bearing in a manufacturer's catalog on the basis of 10^6 revolutions for rating life?

Table 1: Stiffness Parameters of Various Member Materials

Material Used	Poisson Ratio	Elastic GPa	Modulus Mpsi	A	ß
Steel	0.291	207	30.0	0.787 15	0.628 73
Aluminum	0.334	71	10.3	0.787 13	0.638 16
Copper	0.326	119	17.3	0.795 68	0.635 53
Gray cast iron	0.211	100	14.5	0.778 71	0.616 16
General expression			• 1/	0.789 52	0.629 14

Table 2: Diameters and Areas of Coarse-Pitch and Fine-Pitch Metric Threads

Table 2: Dia	uneters a	ind Areas of	Coarse-Pitc			
Malor	Coarse-Pitch Series Tensile- Minor-			Fine-Pitch Series		
Diameter	Pitch	Stress	Minor- Diameter	Pitch	Tensile- Stress	Minor- Diameter
4	Ð	Area A	Area A.	6	Area A.	Area A.
mm	Min	mm ²	mm²	mm	mm²	mm ²
1.6	0.35	1.27	1.07			
2	0.40	2.07	1.79			
2.5	0.45	3.39	2.98			
3	0.5	5.03	4.47			
3.5	0.6	6.78	6.00			
4	0.7	8.78	7.75			
5	0.8	14.2	12.7			
6	1	20.1	17.9			
8	1.25	36.6	32.8	*	39.2	36.0
10	1.5	58.0	52.3	1.25	61.2	56.3
12	1.75	84.3	76.3	1.25	92.1	86.0
14	2	115	104	1.5	125	116
16	2	157	144	1.5	167	157
20	2.5	245	225	1.5	272	259
24	3	353	324	2	384	365
30	3.5	561	519	2	621	596
36	4	817	759	2	915	884
42	4.5	1120	1050	2	1260	1230
48	5	1470	1380	2	1670	1630
56	5.5	2030	1910	2	2300	2250
64	6	2680	2520	2	3030	2980
72	6	3460	3280	2	3860	3800
80	6	4340	4140	1.5	4850	4800
90	6	5590	5360	2	6100	6020
100	6	6990	6740	2	7560	7470
110				2	9180	9080

Table 3: Parameters for Marin Surface Modification Factor.

	Fact	Exponent	
Surface Finish	S _{ut} kpsi	S _{ut} , MPa	Ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995

Figure 1: Notch-sensitivity charts for steels and UNS A92024-T wrought aluminum alloys

Notch radius r, mm

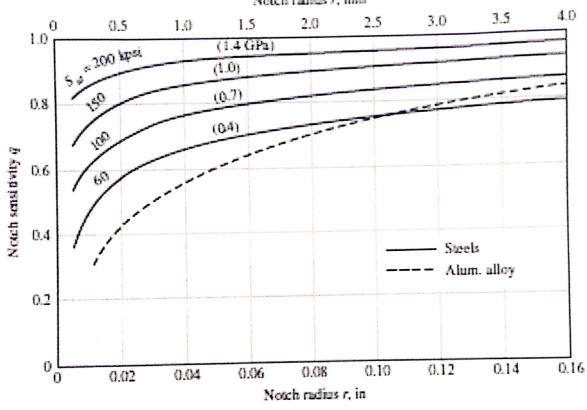
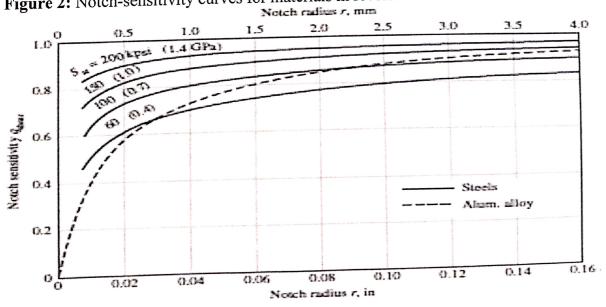



Figure 2: Notch-sensitivity curves for materials in reversed torsion.

